How Wind Works?

- Wind energy is created by uneven heating of the earth's surface.
- Wind energy is kinetic energy mass and momentum.

Calculation of Wind Power

- Power in the wind = $k \frac{1}{2} \rho A V^3$
 - Effect of wind speed, V
 - Effect of swept area, A
 - Effect of air density, ρ
 - Constant for units conversion, k
 - [English units]
 - [SI units]

Wind Speed and Power Increase with Height Above the Ground

Relative Size of Small Wind Turbines

Air Density Changes with Elevation

Air Density Changes with Temperature

Calculation of Wind Power

- Power in the wind = $k \frac{1}{2} \rho A V^3$
 - Effect of wind speed, V
 - Effect of rotor diameter on swept area
 A = Pi D² / 4
 - Effect of elevation and temperature on air density, ρ

Calculation of Wind Turbine Power

- Power from a wind turbine = C_p k ½ ρ A V³
 - Effect of wind speed, V
 - Effect of rotor diameter on swept area $A = Pi D^2 / 4$
 - Effect of elevation and temperature on air density, ρ
 - Power coefficient (efficiency), C_p up to ~0.35 for small wind turbines (theoretical max = 0.59)

Wind **Machine Types**

Wind Turbine Power Curve

Southwest Windpower AIR 403

Calculation of Wind Power SI Units

Power in the wind = $k \frac{1}{2} \rho A V^3$

- P power, kW
- $k = 0.001 = \frac{1}{1000}$
- ρ air density, kg/m³
 (1.225 kg/m³ at sea level)
- A swept area, m²
- V wind speed, m/s

- P − power, W
- k = 1.0
- ρ air density, kg/m³
 (1.225 kg/m³ at sea level)
- A swept area, m²
- V wind speed, m/s

Calculation of Wind Power English Units

Power in the wind = $k \frac{1}{2} \rho A V^3$

- P power, kW
- k = 0.000133
- ρ air density, lb/ft³
 (0.07647 lb/ft³ at sea level)
- A swept area, ft²
- V wind speed, mph

- P power, hp
- k = 0.000178
- ρ air density, lb/ft³
 (0.07647 lb/ft³ at sea level)
- A swept area, ft²
- V wind speed, mph

